# How to rationalize the denominator with x

## Fractional terms: explanation, rules, etc.

Here you can learn what fraction terms are and how to calculate with them. Let's look at this:

- A
**Explanation**what fraction terms are and what rules apply. **Examples**for expanding, shortening and calculating with fraction terms.**Tasks / exercises**so that you can practice this yourself.- A
**Video**to fraction terms. - A
**Question and answer area**to this area.

Tip: You should already have a basic understanding of fractions. If you can't do this yet, please see the Fractional Calculation article.

**Explanation: Fractional terms and rules**

First of all, let's clarify what a fraction term actually is.

**Note:**

A fraction term is understood to be a fraction of numerator and denominator in which at least one variable (unknown) occurs in the denominator.

**Some examples of fraction terms**:

**Fractional terms definition set**:

Perhaps one or the other still remembers that one cannot divide by zero? Of course, this also applies to breaks. For this reason, it must be ensured that the denominator of a fraction does not become zero. The numbers which cannot be used are entered in the definition set.

Example definition set:

The definition set for the following fraction term is to be determined.

Solution:

We take the denominator and set this to zero. With this we can calculate the number for x, which we are not allowed to use. We write this number in the definition set.

Display:**Fractional terms add, subtract, multiply and divide**

In this section we look at examples of basic arithmetic operations using fraction terms.

**Example 2: Fractional terms addition and expansion**

Let's start by adding fractions. The simplest case of adding fraction terms is that the denominator is the same for all fractions. In this case you simply take over the denominator in the result and simply add the numerators with 4 + 6 = 10. Note: The definition set would be 0 here, because x = 0 must not be.

It gets a little more difficult when the denominators are different. In this case we are looking for a common denominator. To do this, we multiply the two output denominators by x^{2} Y = x^{2} y. The first fraction had x in the denominator^{2}. Therefore we only expand with y. The second fraction only had y in the denominator, so we add x to the numerator^{2}. Note: Both x and y cannot become zero.

**Example 3: Fractional term subtraction and expansion**

In this example, fractional terms are to be subtracted. We divided the front 3x by xy and then minus 1. The 1 in the back is nothing more than a fraction 1: 1. To find the main denominator, we multiply 1 xy and get xy as the new denominator. We still have to adjust the fractions (hence the red boxes).

We don't have to expand on the first fraction, because the denominator has not changed. With the second fraction, xy goes into the numerator. That is also logical, the xy: xy = 1. Now we can subtract the fraction: the denominator remains the same and the numerators are subtracted. If you like, you can now exclude x and shorten this out.

Note: x and y must not become zero either.

**Example 4: multiplying fractional terms**

Next we multiply a fraction term. It's very simple: the numerator is multiplied by the numerator and the denominator is multiplied by the denominator. Then we can shorten it with 2. Otherwise y and and u must not become zero.

**Example 5: Dividing fractions**

Let's see how to divide fractions. This is done by multiplying by the reciprocal. The numerator and denominator of the second fraction are swapped. Then we multiply the tenor by the numerator and we multiply the denominator by the denominator. Since the numerator and denominator are the same, it can be reduced to 1.

Dividing by zero is not permitted here either.

### Exercises / Exercises Fractional Terms

Show:### Video fraction terms

### Explanation and examples

We'll look at how to deal with fraction terms in the next video, under the heading Fractional Equations. Let's look at this:

- An explanation of what fractions are.
- Explanations of the definition set.
- Example 1 is pre-calculated.
- Example 2 is precalculated ..

Next video »

### Questions with answers about fraction terms

In this section we look at typical questions with answers about fraction terms.

**Q: What are the rules for fractional terms?**

A: You should follow these rules for fractional terms.

- First determines which numbers may not be used (definition set).
- When adding fraction terms, a common denominator must be found and the fractions expanded accordingly. Then the denominator is retained and the numerators are added. Also add more under fractions.
- When subtracting fraction terms, a common denominator must be found and the fractions expanded accordingly. Then the denominator is retained and the numerators are subtracted. Subtract more under fractions as well.
- When multiplying fraction terms, numerator times numerator and denominator times denominator are calculated. You can learn the basics under multiplying fractions.
- When dividing fraction terms, the reciprocal value is formed from the second fraction and then numerator times numerator and denominator times denominator are calculated. You can learn the basics under dividing fractions.

**Q: What other topics should I check out?**

A: Take a look at these topics:

- Who put 50p in you meaning
- No mercy where are you going 320kbps
- What is ndis5 driver
- Purpose of the tpr diagram at temperature
- How to tile a tower roof
- How do chromatium bacteria move
- Who are Paul Kalanithi's parents
- Actors playing father characters crossword puzzles
- How tall is Taylor Marie Hill Height
- What does ctrl old f12 dos
- Use of an antenna noise bridge
- Piyali banerjee actor who has died
- 2007 isuzu nqr specs howard
- Filler is diluted with which вЂ ‹вЂ‹ solvent
- The sky is everywhere pdf vk
- Do not disturb mode iPhone WhatsApp
- Never overwinter how to get black ice equipment
- Eu sou android whatsapp help
- Sarah Brooks Methow preservation logos
- Mop how about a few texts soy
- Rk3288 crashes codes when fast forwarding
- Asibhebhane ku whatsapp free
- How to properly inject igf-1 lr3
- Thorpe Hall Peterborough UK where to live