Frank b leader wholesale salary

Evaluation of Dry Deposition, Pollutant Damage, and Forest Health with Throughfall Studies

Mechanisms of Forest Response to Acidic Deposition pp 10-61 | Cite as

  • 13Citations
  • 69 downloads

Abstract

This chapter summarizes some of the burgeoning literature on the alteration of precipitation chemistry by forest canopies, with emphasis on canopy buffering of acidic precipitation and the influence of dry deposited pollutants on throughfall chemistry. Field studies involving forest trees are emphasized, although reference is made to the literature on crop species, and that on laboratory experiments, where necessary.

Keywords

Forest Canopy Bulk Precipitation Simulated Acid Rain Mineral Cycling Canopy Surface
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Preview

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen, G. 1980. Impact of atmospheric sulfur deposition on forest eco-systems. In: Atmospheric Sulfur Deposition, D.S. Shriner, C.R. Richmond, and S.E. Lindberg (eds.), Pp. 397-415. Ann Arbor, Michigan: Ann Arbor Science.Google Scholar
  2. Abrahamsen, G, K. Bjor, R. Horntvedt, and B. Tveite. 1976. Effects of acid precipitation on coniferous forests. In: Proceedings of the First International Symposium on Acid Precipitation and the Forest Ecosystem, L.S. Dochinger and T.A. Seliga (eds.), Pp. 991-1009. USDA Forest Service Gen Tech Rep NE-23.Google Scholar
  3. Adams, C.M. and T.C. Hutchinson. 1984. A comparison of the ability of leaf surfaces of three species to neutralize acid rain drops. New Phytol 97: 463-478. Google Scholar
  4. Alcock, M.R. and A.J. Morton. 1981. The sulfur content and pH of rainfall and of throughfalls under pine and birch. J Appl Ecol 18: 835-839. Google Scholar
  5. Art, H.W., F.H. Bormann, G.K. Voigt, and G.M. Woodwell. 1974. Barrier island forest ecosystem: role of meteorologic nutrient inputs. Science 184: 60-62. PubMedGoogle Scholar
  6. Astrup, M. and M. Biilow-Olsen. 1979. Nutrient cycling in two Danish beech (Fagus sylvaticaForests growing on different soil types. Holarct Ecol 2: 125–129. Google Scholar
  7. Attiwill, P.M. 1966. The chemical composition of rainwater in relation to cycling of nutrients in mature eucalyptus forest. Plant Soil 24: 390-408. Google Scholar
  8. Attiwill, P.M. 1980. Nutrient cycling in a Eucalyptus obliqua (L’Herit) forest. II. Nutrient uptake and nutrient return. Aust J Bot 28: 199-222. Google Scholar
  9. Bache, D.H. 1977. Sulfur dioxide uptake and the leaching of sulfates from a pine forest. J Appl Ecol 14: 881-895. Google Scholar
  10. Baker, E.A. and Hunt, G.M. 1986. Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102: 161-173. Google Scholar
  11. Baker, J., D. Hocking, and M. Nyborg. 1977. Acidity of open and intercepted precipitation in forests and effects on forest soils in Alberta, Canada. Water Air Soil Pollut 7: 449-460. Google Scholar
  12. Banaszak, K.T. 1975. Relative throughfall enrichment by biological and aerosol-derived materials in loblolly pines. PB-245-258 / 9ST. Mississippi Water Research Institute, Mississippi State University. Springfield, Virginia: National Technical Information Center.Google Scholar
  13. Basilevich, N.I. and Rodin, L.E. 1966. The biological cycle of nitrogen and ash elements in plant communities of the tropical and subtropical zones. For Abstr 27: 357-368. (Transl. From Botaniceskig Zurnal 49: 185-209.) Google Scholar
  14. Beauford, W., J. Barber, and A.R. Barringer. 1977. Release of particles containing metals from vegetation into the atmosphere. Science 195: 571-573. PubMed Google Scholar
  15. Belot, Y. and D. Gauthier. 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: Heat and Mass Transfer in the Biosphere, Part I, Transfer Processes in the Plant Environment, D.A. deVries and N.H. Afgan (eds.), Pp. 583-591. New York: Wiley.Google Scholar
  16. Bentley, B.L. and E.J. Carpenter. 1984. Direct transfer of newly-fixed nitrogen from free-living epiphyllous microorganisms to their host plant. Oecologia 63: 52-56. Google Scholar
  17. Benzing, D.H. 1973. The monocotyledons: Their evolution and comparative biology — mineral nutrition and related phenomena in Bromeliaceae and Orchidaceae. Q Rev Biol 48: 277-290. Google Scholar
  18. Bernhard-Renversat, F. 1975. Nutrients in throughfall and their quantitative importance in rain forest mineral cycles. In: Tropical Ecological Systems — Trends in Terrestrial and Aquatic Research, E. Medina and F.B. Golley (eds.), Pp. 153-154. New York: Springer-Verlag.Google Scholar
  19. Best, G.R. and C.D. Monk. 1975. Cation flux in hardwood and white pine watersheds. In: Mineral Cycling in Southeastern Ecosystems F.G. Howell, J.B. Gentry, and M.H. Smith (eds.), Pp. 847-861. Springfield, Virginia: National Technical Information Center.Google Scholar
  20. Binkley, D., J.P. Kimmins, and M.C. Feller. 1982. Water chemistry profiles in an early successional and a mid-successional forest in coastal British-Columbia Canada. Can J For Res 12: 240-248. Google Scholar
  21. Bjor, K., R. Horntvedt, and E. Joranger. 1974. Distribution and chemical com-position of precipitation in a southern Norway forest stand (in Norwegian). Report 1/74, Norwegian Council for Scientific and Industrial Research, Oslo-As (referenced in Bache 1977) .Google Scholar
  22. Bockheim, J.G., S.W. Lee, and J.E. Suffer. 1983. Distribution and cycling of elements in a Pinus resinosa plantation ecosystem, Wisconsin, USA. Can J For Res 13: 609-619. Google Scholar
  23. Bollen, W.B., C.S. Chen, K.C. Lu, and R.F. Tarrant. 1968. Effect of stemflow precipitation on chemical and microbiological soil properties beneath a single alder tree. In: Biology of Alder, J.M. Trapp, J.F. Franklin, R.F. Tarrant, and G.M. Hansen (eds.), Pp. 148-156. PNW Forest and Range Experiment Station, USDA Forest Service, Portland, Oregon.Google Scholar
  24. Bormann, F.H. 1982. The effects of air pollution on the New England landscape. Ambio 11: 338-346. Google Scholar
  25. Boynton, D. 1954. Nutrition by foliar application. Annu Rev Plant Physiol 5: 31-54. Google Scholar
  26. Bringmark, L. 1980. Ion leaching through a podsol in a Scots pine stand. In: Structure and Function of a Northern Coniferous Forest — An Ecosystem Study, T. Persson (ed.). Ecol Bull (Stockholm) 32: 341-361. Google Scholar
  27. Brinkmann, W.L.F. 1983. Nutrient balance of a central Amazonian rainforest: Comparison of natural and man-managed systems. In: Hydrology of Humid Tropical Regions with Particular Reference to the Hydrological Effects of Agriculture and Forestry Practice, R. Keller, (ed.), Pp. 153-163. International Association of Hydrological Sciences Publ. 140.Google Scholar
  28. Brinkmann, W.L.F. and A. dos Santos. 1973. Natural waters in Amazonia. VI. Soluble calcium properties. Acta Amazónica 3: 33-40.Google Scholar
  29. Brinson, M.M., H.D. Bradshaw, R.N. Holmes, and J.B. Elkins, Jr. 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology 61: 827-835. Google Scholar
  30. Brown, A.H.F. 1974. Nutrient cycles in oakwood ecosystems in northwest En-gland. In: The British Oak — Its History and Natural History, M.G. Morris and F.H. Perring (eds.) Cambridge, United Kingdom: Pendragon Press.Google Scholar
  31. Carlisle, A. 1965. Carbohydrates in the precipitation beneath a Sessile Oak Quercus petraea (Mattushka) Darling canopy. Plant Soil 24: 399-400. Google Scholar
  32. Carlisle, A., A.H.F. Brown, and E.J. White. 1966. The organic matter and nutrient elements in the precipitation beneath a Sessile Oak (Quercus petraea) canopy. J Ecol 54: 87-98. Google Scholar
  33. Carlisle, A., A.H.F. Brown, and E.J. White. 1967. The nutrient content of tree stemflow and ground flora litter and leachates in a Sessile Oak (Quercus petraea) woodland. J Ecol 55: 615-627. Google Scholar
  34. Carrier, L. and G. Gagnon. 1985. Maple dieback in Quebec. Report for Ministère de l’Energie et des Ressources. Service de la Recherche Appliquée, Sainte-Foy, Québec.Google Scholar
  35. Chamberlain, A.C. 1975a. The movement of particles in plant communities. In: Vegetation and the Atmosphere, Vol. 1, Principles, J.L. Monteith (ed.), Pp. 155-203. New York: Academic Press.Google Scholar
  36. Chamberlain, A.C. 1975b, Pollution in plant canopies. In: Heat and Mass Transfer in the Biosphere, Part I, Transfer Processes in the Plant Environment, D.A. deVries and H.H. Afgan (eds.), Pp. 561-582. New York: Wiley.Google Scholar
  37. Chen, C.W., R.J.M. Hudson, S.A. Gherini, J.D. Dean, and R.A. Goldstein. 1983. Acid rain model: Canopy module. J Environ Engineering 109: 585-603. Google Scholar
  38. Chia, L.S., C.I. Mayfield, and J.E. Thompson. 1984. Simulated acid rain induces lipid peroxidation and membrane damage in foliage. Plant Cell Environ 7: 333-338. Google Scholar
  39. Clayton, J.L. 1972. Salt spray and mineral cycling in two California coastal ecosystems. Ecology 53: 74-81. Google Scholar
  40. Clements, R.G. and J.A. Colon. 1975. The rainfall interception process and mineral cycling in a Montane Forest in eastern Puerto Rico. In: Mineral Cycling in Southeastern Ecosystems, F.G. Howell, J.B. Gentry, and M.H. Smith (eds.), Pp. 813-823. Springfield, Virginia: National Technical Information Center.Google Scholar
  41. Clements, C.R., L.P.H. Jones, and M.J. Hopper. 1972. The teaching of some elements from herbage plants by simulated rain. J Appl Ecol 9: 249-260. Google Scholar
  42. Cloutier, A. 1985. Microdistribution des espèces végétales au pied des troncs d ’Acer saccharum dans une érablière du sud du Québec. Can J Bot 63: 274-276. Google Scholar
  43. Cole, D.W. and D.W. Johnson. 1977. Atmospheric sulfate additions and cation leaching in a Douglas Fir ecosystem. Water Resour Res 13: 313-317.Google Scholar
  44. Cole, D.W. and M. Rapp. 1981. Elemental cycling in forest ecosystems. In: Dynamic Properties of Forest Ecosystems, D.E. Reichle (ed.), Pp. 341–409. New York: Cambridge University Press.Google Scholar
  45. Corlin, J.W. 1971. Nutrient cycling as a factor in site productivity and forest fertilization. In: Tree Growth and Forest Soils, C.T. Youngberg and C.B. Davey (eds.), Pp. 313-325. Corvallis, Oregon: Oregon State University Press.Google Scholar
  46. Cowling, E.B. and R.A. Linthurst. 1981. The acid precipitation phenomenon and its ecological consequences. Bioscience 31: 649-654. Google Scholar
  47. Crittenden, P.D. 1983. The role of lichens in the nitrogen economy of subarctic woodlands: nitrogen loss from the nitrogen-fixing lichen Stereocaulon paschal during rainfall. In: Nitrogen as an Ecological Factor, J.A. Lee, S. McNeill, and I.H. Rorison (eds.), Pp. 43-68. Oxford: Blackwell Scientific.Google Scholar
  48. Cronan, C.S. and W.A. Reiners. 1983. Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia (Berlin) 59: 216-223. Google Scholar
  49. Cronan, C.S. and C.L. Schofield. 1979. Aluminum leaching response to acid precipitation: Effects on high elevation watersheds in the northeast. Science 204: 304-306. PubMed Google Scholar
  50. Crossley, D.A., Jr. and T.R. Seastedt. 1981. Effects of canopy arthropod consumption and leaf biomass on throughfall chemistry of a successional forest in the southern Appalachians (abstr.). Bull Ecol Soc Am 62: 106. Google Scholar
  51. Darral, N.M. and H.J. Hunter. 1984. Biochemical diagnostic tests for the effect of air pollution on plants. In: Gaseous Air Pollutants and Plant Metabolism, M.J. Koziol and F.R. Whatley (eds.), Pp. 333-349. London: Butterworths.Google Scholar
  52. Dayton, B.R. 1970. Slow accumulation and transfer of radio-strontium by young loblolly trees (Pinus taeda L..). Ecology 51: 204-216. Google Scholar
  53. Deal, W.J. 1983. The quantity of acid in acid fog. J Air Pollut Control Assoc 33: 691. Google Scholar
  54. De Boois, H.M. and E. Jansen. 1975. Effects of nutrients in throughfall water and of litterfall upon fungal growth in a forest soil layer. Pedobiologia 16: 161-166. Google Scholar
  55. Denaeyer-DeSmet, p. 1966. Bilan annuel des apports d’éléments minéraux par les eaux de précipitation sous couvert forestier dans la forêt mélangée caducifoliée de Blaimont. Bull Soc R Bot Belg 99: 345-375. Google Scholar
  56. Denison, R., B. Caldwell, B. Bormann, L. Eldred, C. Swanberg, and S. Anderson. 1977. The effects of acid rain on nitrogen fixation in western Washington coniferous forests. Water Air Soil Pollut 8: 21–34. Google Scholar
  57. Dethier, D.P. and S.B. Jones. 1985. Atmospheric and weathering contributions to stream chemistry, northwestern Massachusetts. Northeastern Environ Sci. 4: 8-17.Google Scholar
  58. Droppo, J.G. 1976. Dry removal of air pollutants by vegetation canopies. In: Proceedings of 4th National Conference on Fire and Forest Meteorology, B.H. Baker and M.A. Basberg (eds.), Pp. 200-208. USDA Gen. Tech. Rep.Google Scholar
  59. Droppo, J.G. 1980. Experimental techniques for dry-deposition measurements. In: Atmospheric Sulfur Deposition, D.S. Shriner, C.R. Richmond, and S.E. Lindberg (eds.), Pp. 209-221. Ann Arbor, Michigan: Ann Arbor Science.Google Scholar
  60. Eaton, J.S., G.E. Likens, and F.H. Bormann. 1973. Throughfall and stemflow chemistry in a northern hardwood forest. J Ecol 61: 495-508. Google Scholar
  61. Eaton, J.S., G.E. Likens, and F.H. Bormann. 1978. The input of gaseous and particulate sulfur to a forest ecosystem. Tellus 30: 546-551.Google Scholar
  62. Edwards, RJ. 1982. Studies of mineral cycling in a montane forest in New Guinea. V. Rates of cycling in throughfall and litterfall. J Ecol 70: 807-827. Google Scholar
  63. Environmental Protection Agency. 1984a. Air quality criteria for ozone and other photochemical oxidants. EPA-600 / 8-84-020A, External review draft. Washington, D.C .: U.S. Environmental Protection Agency.Google Scholar
  64. Environmental Protection Agency. 1984b. The acidic deposition phenomenon and its effects: critical assessment review papers. EPA-600 / 8-83-016A. Washington, D.C .: U.S. Environmental Protection Agency.Google Scholar
  65. Epstein, E. 1972. Mineral Nutrition of Plants: Principles and Perspectives. New York: Wiley.Google Scholar
  66. Eriksson, E. 1955. Airborne salts and the chemical composition of river water. Tellus 7: 243-250. Google Scholar
  67. Etherington, J.H. 1967. Studies of nutrient cycling and productivity in oligotrophic systems. I. Soil potassium and windblown sea spray in South Wales dune grassland. J Ecol 55: 743-752. Google Scholar
  68. Evans, L.S. 1984. Botanical aspects of acidic precipitation. Bot Rev 50: 449-490. Google Scholar
  69. Evans, L.S. and I.P. Ting. 1973. Ozone-induced membrane permeability changes. Am J Bot 60: 155-162. Google Scholar
  70. Evans, L.S., D.C. Canada, and K.A. Santucci. 1986. Foliar uptake of 15N from rain. Environ Exp Bot 26: 143-146. Google Scholar
  71. Evans, L.S., T.M. Curry, and K.F. Lewin. 1981. Responses of leaves of Phaseolus vulgaris L. to simulated acid rain. New Phytol 88: 403-420. Google Scholar
  72. Evans, L.S., K.A. Santucci, and M.J. Patti. 1985. Interactions of simulated rain solutions and leaves of Phaseolus vulgaris L. Environ Exp Bot 25: 31-40. Google Scholar
  73. Fahey, T.J. 1979. Changes in nutrient content of snow water during outflow from Rocky Mountain coniferous forest. Oikos 32: 422-428. Google Scholar
  74. Fairfax, J.A.W. and N.W. Lepp. 1974. Effect of simulated "acid rain" on cation loss from leaves. Nature 255: 324-325. Google Scholar
  75. Falconer, R.E. and P.D. Falconer. 1979. Determination of cloudwater acidity at a mountain observatory in the Adirondack mountains of New York State. Atmospheric Sciences Research Center, Publ. No. 741. Albany: State University of New York.Google Scholar
  76. Farquhar, G.D., R. Wetselaar, and P.M. Firth. 1979. Ammonia volatilization from senescing leaves of maize. Science 203: 1257-1258. PubMed Google Scholar
  77. Feller, M.C. 1977. Nutrient movement through western hemlock — western red cedar ecosystems in southwestern British Columbia. Ecology 58: 1269-1283. Google Scholar
  78. Ferres, U., F. Roda, A.M.C. Verdes, and J. Terradias. 1984. Circulation de nutrientes en algunos ecosistemas forestales del Montseny (Barcelona). Mediterr Ser Biol 7: 139-166. Google Scholar
  79. Fogg, G.F. 1947. Quantitative studies on the wetting of leaves by water. Proc R Soc London Biol 134: 503-522. Google Scholar
  80. Foster, N.W. 1974. Annual macroelement transfer from Pinus banksiana Lamb, forest to soil. Can J For Res 4: 470-476. Google Scholar
  81. Foster, N.W. 1985. Acid precipitation and soil solution chemistry within a maple birch forest in Canada. For Ecol Manage 12: 215-231. Google Scholar
  82. Foster, N.W. and S.P. Gessel. 1972. The natural addition of nitrogen, potassium, and calcium to a Pinus banksiana Lamb, forest floor. Can J For Res 2: 448-455. Google Scholar
  83. Franke, W. 1967. Mechanisms of foliar penetration of solutions. Annu Rev Plant Physiol 18: 281-300. Google Scholar
  84. Friedland, A.J. and A.H. Johnson. 1985. Lead distribution and fluxes in a high-elevation forest in northern Vermont. J Environ Qual 14: 332-336. Google Scholar
  85. Fuhrer, J. 1985. Formation of secondary air pollutants and their occurrence in Europe. Experientia 41: 286-301. Google Scholar
  86. Fuhrer, J. and C. Fuhrer-Fries. 1982. Interactions between acidic deposition and forest ecosystem processes. Eur J For Pathol 12: 377-390. Google Scholar
  87. Galloway, J.N. and G.G. Parker. 1979. Sulfur deposition in the eastern United States. In: MAP3S Update: Progress Report for FY 1977 and FY 1978, M.C. McCracken (ed.), Pp. 124-134. Springfield, Virginia: National Technical Information Center.Google Scholar
  88. Galloway, J.N. and G.G. Parker. 1980. Difficulties in measuring wet and dry deposition on forest canopies and soil surfaces.In: Effects of Acid Precipitation on Terrestrial Ecosystems, T.C. Hutchinson and M. Havas (eds.), Pp. 57-68. New York: Plenary Press.Google Scholar
  89. Galloway, J.N., G.E. Likens, and E.S. Edgerton. 1976. Hydrogen ion speciation in the acid precipitation of the northeastern United States. Water Air Soil Pollut 6: 423-433.Google Scholar
  90. Galloway, J.N., G.E. Likens, and M.E. Hawley. 1984. Acid rain: Natural versus anthropogenic components. Science 225: 829-831. Google Scholar
  91. Garten, C.T., Jr. 1988. Fate and distribution of sulfur-35 in yellow poplar and red maple trees. Oecologia 76: 43-50. Google Scholar
  92. Gersper, D.L. and N. Hollowaychuck. 1970. Effects of stemflow water on a Miami soil under a beech tree. I. Morphological and physical properties. Soil Sci Soc Am Proc 34: 779-786. Google Scholar
  93. Gersper, D.L. and N. Hollowaychuck. 1971. Some effects of stem flow from forest canopy trees on chemical properties of soils. Ecology 52: 691-702. Google Scholar
  94. Golley, F.B., J.T. McGinnis, R.G. Clements, G.I. Child, and M.J. Duever. 1975. Mineral Cycling in a Tropical Moist Ecosystem. Athens, Georgia: University of Georgia Press.Google Scholar
  95. Gosz, J.R. 1980. Nutrient budget studies for forests along an elevational gradient in New Mexico. Ecology 61: 515-521. Google Scholar
  96. Gosz, J.R., D.G. Brookins, and D.I. Moors. 1983. Using strontium isotope ratios to estimate inputs to ecosystems. Bioscience 33: 23-30. Google Scholar
  97. Gosz, J.R., G.E. Likens, and F.H. Bormann. 1976. Organic matter and nutrient dynamics of the forest and forest floor in the Hubbard Brook Forest. Oecologia (Berlin) 22: 305320. Google Scholar
  98. Gosz, J.R., G.E. Likens, J.S. Eaton, and F.H. Bormann. 1975. Leaching of nutrients from leaves of selected tree species of New Hampshire. In: Mineral Cycling in Southeastern Ecosystems, F.G. Howell, J.B. Gentry, and M.H. Smith (eds.), Pp. 638-641. Springfield, Virginia: National Technical Information Center.Google Scholar
  99. Graustein, W.C. 1980. The effects of forest vegetation on chemical weathering and solute acquisition: A study of the Tesuque Watersheds near Santa Fe, New Mexico. Ph.D. Dissertation, Department of Geology and Geophysics, Yale University.Google Scholar
  100. Graustein, W.C. and R.L. Armstrong. 1978. Measurement of dust input to a forested watershed using strontium-87 / strontium-86 ratios. Geol Soc Am Abstracts with Programs 10: 411.Google Scholar
  101. Graustein, W.C. and R.L. Armstrong. 1983. The use of strontium-87 / strontium-86 ratios to measure atmospheric transport into forested watersheds. Science 219: 289-292. PubMed Google Scholar
  102. Gregory, P.H. 1961. The Microbiology of the Atmosphere. London: Leonard Hill.Google Scholar
  103. Gregory, P.H. 1971. The leaf as a spore trap. In: Ecology of Leaf Surface Microorganisms, T.E Preece and C.H. Dickinson (eds.), Pp. 239-243. London: Academic Press.Google Scholar
  104. Grimm, U. and H.W. Fassbender. 1981. Ciclos biogeoquimicos en un ecosistema forestal de los Andes Occidentales de Venezuela. IIL Ciclo hidrológica y translocation de elementos quimicos con el agua. Turrialba 31: 89-99. Google Scholar
  105. Grodzinska, K. 1971. Acidification of tree bark as a measure of air pollution in southern Poland. Bull Acad Pol Sci, Ser Sci Biol 14: 189-195. Google Scholar
  106. Haines, B., J. Chapman, and C.D. Monk. 1985. Rates of mineral element leaching from leaves of nine plant species from a southern Appalachian forest succession subjected to simulated acid rain. Bull Torrey Bot Club 112: 258-264. Google Scholar
  107. Hallam, N.D. and B.E. Juniper. 1971. The anatomy of the leaf surface. In: Ecology of Leaf Surface Micro-organisms, T.F. Preece and C.H. Dickinson (eds.), Pp. 3 - 37. London: Academic Press.Google Scholar
  108. Hart, G.S. and D.R. Parent. 1974. Chemistry of a throughfall under Douglas Fir and Rocky Mountain Juniper. Am Midi Nat 92: 191-201.Google Scholar
  109. Haughbotn, 0. 1973. Nedb0runders0kelsor i Sarpsborgdistriktet og undersokelser over virkninger av forsurende nedfall pájordas kjemiske egenskaper, Ás-NLH 1973 (referenced in Horntvedt 1975) .Google Scholar
  110. Heinrichs, H. and R. Mayer. 1977. Distribution and cycling of major and trace elements in two Central European forest ecosystems. J Environ Qual 6: 402-407.Google Scholar
  111. Helvey, J.D. and J.H. Patrie. 1965. Canopy and litter interception of rainfall by hardwoods in the eastern United States. Water Resour Res 1: 193-206.Google Scholar
  112. Henderson, G.S., W.F. Harris, D.E. Todd, Jr., and T. Grizzard. 1977. Quality and chemistry of throughfall as influenced by forest type and season. J Ecol 65: 365-374. Google Scholar
  113. Herrera, R., C.F. Jordan, H. Klinge, and E. Medina. 1978. Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3: 223-232. Google Scholar
  114. Hesse, P.R. 1957. Sulfur and nitrogen changes in forest soils of East Africa. Plant Soil 9: 86-96. Google Scholar
  115. Hileman, B. 1984. Forest decline from air pollution. Environ Sci Technol 18: A8-A9.Google Scholar
  116. Hill, A.C. 1971. Vegetation: a sink for atmospheric pollutants. J Air Pollut Control Assoc 21: 341-346. PubMedGoogle Scholar
  117. Hoffman, W.A., Jr., S.E. Lindberg, and R.R. Gymnast. 1980a. Precipitation acidity: The role of the forest in acid exchange. J Environ Qual 9: 95-100. Google Scholar
  118. Hoffman, W.A., Jr., S.E. Lindberg, and R.R. Gymnast. 1980b. Some observations of organic constituents in rain above and below a forest canopy. Environ Sci Technol 14: 999-1002. Google Scholar